Coverage for backend/django/core/auxiliary/views/UploadMSSData.py: 88%
60 statements
« prev ^ index » next coverage.py v7.10.7, created at 2026-02-11 21:43 +0000
« prev ^ index » next coverage.py v7.10.7, created at 2026-02-11 21:43 +0000
1from rest_framework.response import Response
2from core.auxiliary.models.DataCell import DataCell
3from core.auxiliary.models.DataRow import DataRow
4from drf_spectacular.utils import extend_schema
5from core.auxiliary.models.DataColumn import DataColumn
6from rest_framework.decorators import api_view
7from drf_spectacular.utils import extend_schema
8from rest_framework import serializers
9from core.validation import api_view_validate
11class UploadDataSerializer(serializers.Serializer):
12 # THe data format is e.g:
13 # {
14 # "data": {
15 # "heater_enthalpy": [1, 2, 3, 4, 5],
16 # "heater_temperature": [1, 2, 3, 4, 5]
17 # }
18 # "flowsheet": 1
19 # }
20 flowsheet = serializers.IntegerField()
21 scenario=serializers.IntegerField()
22 data = serializers.DictField( # column name
23 child=serializers.ListField( # List of values
24 child=serializers.FloatField() # Value
25 )
26 )
29@api_view_validate
30@extend_schema(request=UploadDataSerializer, responses=None)
31@api_view(['POST'])
32def upload_data(request) -> Response:
33 try:
34 serializer = UploadDataSerializer(data=request.data)
35 serializer.is_valid(raise_exception=True)
36 validated_data = serializer.validated_data
37 data = validated_data.get('data')
38 flowsheet_id = validated_data.get('flowsheet')
39 scenario_id = validated_data.get('scenario')
40 except Exception as e:
41 return Response(status=400, data=f"Invalid csv data: {e}")
43 # Step 1: Create any missing data column under the given optimization
44 data_columns = []
45 for key in data:
46 data_columns.append(DataColumn(name=key, scenario_id=scenario_id,flowsheet_id=flowsheet_id))
48 DataColumn.objects.bulk_create(data_columns, ignore_conflicts=True)
49 # Step 2: Determine number of rows
50 num_rows = len(list(next(iter(data.values()))))
52 # Step 3: Get existing data rows by optimization
53 existing_rows = list(DataRow.objects.filter(scenario_id=scenario_id).order_by("index"))
54 existing_indices = {r.index for r in existing_rows}
56 # Step 4: Create missing data rows
57 new_rows = [
58 DataRow(index=i, flowsheet_id=flowsheet_id, scenario_id=scenario_id)
59 for i in range(num_rows)
60 if i not in existing_indices
61 ]
62 if new_rows: 62 ↛ 66line 62 didn't jump to line 66 because the condition on line 62 was always true
63 DataRow.objects.bulk_create(new_rows)
65 # Refresh data row list
66 data_rows = list(DataRow.objects.filter(scenario_id=scenario_id).order_by("index"))
67 data_row_map = {r.index: r for r in data_rows}
69 # Step 5: Get updated data columns
70 data_columns = DataColumn.objects.filter(scenario_id=scenario_id).prefetch_related("dataCells")
71 column_map = {column.name: column for column in data_columns}
73 # Step 6: Build mapping of existing values
74 existing_values = {
75 column.name: {sv.data_row.index: sv for sv in column.dataCells.all()}
76 for column in data_columns
77 }
79 # Step 7: Insert or update DataCells
80 for i in range(num_rows):
81 data_row = data_row_map[i]
82 for column_name, values in data.items():
83 value = values[i]
84 column = column_map[column_name]
85 existing = existing_values.get(column_name, {}).get(i)
87 if existing: 87 ↛ 88line 87 didn't jump to line 88 because the condition on line 87 was never true
88 existing.value = value
89 existing.save()
90 data_row = data_row_map[i]
91 for column_name, values in data.items():
92 value = values[i]
93 column = column_map[column_name]
94 existing = existing_values.get(column_name, {}).get(i)
96 if existing: 96 ↛ 97line 96 didn't jump to line 97 because the condition on line 96 was never true
97 existing.value = value
98 existing.save()
99 else:
100 DataCell.objects.create(value=value, data_column=column, data_row=data_row, flowsheet_id=flowsheet_id)
102 return Response(status=200, data="Data uploaded successfully")